множество

  • 121Несчетное множество — В теории множеств счётное множество есть бесконечное множество, элементы которого возможно пронумеровать натуральными числами. Более формально: множество X является счётным, если существует биекция , где обозначает множество всех натуральных… …

    Википедия

  • 122Несчётное множество — В теории множеств счётное множество есть бесконечное множество, элементы которого возможно пронумеровать натуральными числами. Более формально: множество X является счётным, если существует биекция , где обозначает множество всех натуральных… …

    Википедия

  • 123Канторово множество — есть один из простейших фракталов, подмножество единичного отрезка вещественной прямой, которое является классическим примером «плохого множества» в математическом анализе. Описано в 1883 году Г. Кантором. Содержание 1 Определения 1.1… …

    Википедия

  • 124Кантора множество — Канторово множество есть один из простейших фракталов, подмножество единичного отрезка вещественной прямой, которое является классическим примером «плохого множества» в математическом анализе. Описано в 1883 году Г. Кантором. Содержание 1… …

    Википедия

  • 125Канторовское множество — Канторово множество есть один из простейших фракталов, подмножество единичного отрезка вещественной прямой, которое является классическим примером «плохого множества» в математическом анализе. Описано в 1883 году Г. Кантором. Содержание 1… …

    Википедия

  • 126Выпуклое множество — Выпуклое множество …

    Википедия

  • 127Математическое множество — Множество  один из ключевых объектов математики, в частности, теории множеств. «Под множеством мы понимаем объединение в одно целое определенных, вполне различимых объектов нашей интуиции или нашей мысли» (Г. Кантор). Это не является в полном… …

    Википедия

  • 128Направленное множество — В математике, направленным множеством называется непустое множество A с заданным на нем рефлексивным транзитивным отношением ≤ (т. е. предпорядком), обладающее дополнительным свойством: для любых двух элементов из A найдется элемент из A… …

    Википедия

  • 129счётное множество — понятие теории множеств, бесконечное множество, элементы которого возможно занумеровать натуральными числами. Множество всех рациональных чисел и даже множество всех алгебраических чисел счётны, однако множество всех действительных чисел несчётно …

    Энциклопедический словарь

  • 130Бесконечное множество — множество, не являющееся конечным. Можно дать ещё несколько эквивалентных определений бесконечного множества: Множество, в котором для любого натурального числа найдётся конечное подмножество из элементов. Множество, в котором найдётся счётное… …

    Википедия

  • 131Максимальное независимое множество вершин в дереве — Задача о независимом множестве относится к классу NP полных задач в области теории графов. По сути, она полностью эквивалентна задаче о клике. Независимый набор из 9 голубых вершин Множество вершин графа называется независимым, если никакие две… …

    Википедия

  • 132АНАЛИТИЧЕСКОЕ МНОЖЕСТВО — подмножество полного сепарабельного метрич. пространства, являющееся непрерывным образом пространства иррациональных чисел. Понятие А. м. введено Н. Н. Лузиным [1]. Это классич. определение А. м. обобщается на случай общих метрич. и топологич.… …

    Математическая энциклопедия

  • 133КАНОНИЧЕСКОЕ МНОЖЕСТВО — замкнутое, xa множество, множество Мтопологии, пространства, являющееся замыканием открытого множества; другими словами, это множество, являющееся замыканием своего открытого ядра <M> : М= [<M>]. В каждом замкнутом множестве… …

    Математическая энциклопедия

  • 134ПРЕДЕЛЬНОЕ МНОЖЕСТВО — траектории {ftx} динамической системы ft множество А х всех a предельных точек (a предельное множество) или множество Wx всех сопредельных точек (w предельное множество) этой траектории (см. Предельная, точка траектории). Для траектории {ft х}… …

    Математическая энциклопедия

  • 135Непустое множество — Пустым множеством в математике называется множество, не содержащее ни одного элемента. В одних теориях множеств существование [по меньшей мере одного] пустого множества провозглашается (см. аксиому пустого множества), в других  доказывается. Во… …

    Википедия

  • 136Универсальное множество — …

    Википедия

  • 137ЧАСТИЧНО УПОРЯДОЧЕННОЕ МНОЖЕСТВО — непустое множество, на к ром зафиксирован нек рый порядок. Ч. у. м. является примером модели. Примеры Ч. у. м.: 1) множество натуральных чисел с обычным порядком; 2) множество натуральных чисел, где означает, что аделит b; 3) множество всех… …

    Математическая энциклопедия

  • 138Замкнутое множество — Для термина «Замкнутость» см. другие значения. Замкнутое множество  подмножество пространства дополнение к которому открыто. Содержание 1 Определение 2 Замыкание 3 Свойства …

    Википедия

  • 139Случайное множество — измеримое отображение семейства элементарных исходов произвольного вероятностного пространства в некоторое пространство , элементами которого являются множества. Существуют различные уточнения понятия. Случайное множество в зависимости от… …

    Википедия

  • 140Конечное множество — Конечное множество  множество, количество элементов которого конечно, то есть, существует неотрицательное целое число k, равное количеству элементов этого множества. В противном случае множество называется бесконечным. Содержание 1… …

    Википедия